If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+10p+2=0
a = 5; b = 10; c = +2;
Δ = b2-4ac
Δ = 102-4·5·2
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{15}}{2*5}=\frac{-10-2\sqrt{15}}{10} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{15}}{2*5}=\frac{-10+2\sqrt{15}}{10} $
| -0.1x2+0.8x+6=0 | | 2p-3(3-3p)=6(p-6)-33 | | 4.9x^2+22.36x-10=0 | | a^2+6a+4=0 | | 5(x-2)+3(x+1)=10-3x | | 4(4+4x)=0 | | 4(y+2)=-3(y-4)-11 | | 5x-3x+13=6x+1 | | 2v^2-2v-11=0 | | 5m^2+8m-1=0 | | 2x-1=5-2x | | 3(m+7)=5(3−m) | | 7s-4s+s-3=7 | | z^2-10z+2=0 | | 5x^2=10000+x^2 | | 6(x-3)=-4(x+4)+42 | | x2+7x+11=0 | | 3d^2-11d+4=0 | | 800+6x-2x=940 | | 4r^2-13r+6=0 | | 4r^2−13r+6=0 | | 4r2−13r+6=0 | | x^2=12100 | | -10=-6(x-4)+8(x-5) | | x+1/2=-1/4 | | 4n^2-15n+10=0 | | 1/2y+3=2/3 | | 8x-8+5x+25=180 | | 2x+4(3x-6)=4-(6x+2) | | c10(2)2(c20)=130 | | 8(y-3)+4(y+1)=52 | | 3x(6x-5)=18x2+x-32 |